
Microarchitectural Support for Program Code Integrity Monitoring in
Application-specific Instruction Set Processors∗

Yunsi Fei
Dept. of Electrical & Computer Engineering

Z. Jerry Shi
Dept. of Computer Science & Engineering

University of Connecticut, Storrs, CT 06269
E-mail: {yfei,zshi}@engr.uconn.edu

Abstract

Program code in a computer system can be altered either
by malicious security attacks or by various faults in micro-
processors. At the instruction level, all code modifications
are manifested as bit flips. In this work, we present a gener-
alized methodology for monitoring code integrity at run-time
in application-specific instruction set processors (ASIPs),
where both the instruction set architecture (ISA) and the un-
derlying microarchitecture can be customized for a particu-
lar application domain. We embed monitoring microoper-
ations in machine instructions, thus the processor is aug-
mented with a hardware monitor automatically. The moni-
tor observes the processor’s execution trace of basic blocks
at run-time, checks whether the execution trace aligns with
the expected program behavior, and signals any mismatches.
Since microoperations are at a lower software architecture
level than processor instructions, the microarchitectural sup-
port for program code integrity monitoring is transparent to
upper software levels and no recompilation or modification
is needed for the program. Experimental results show that
our microarchitectural support can detect program code in-
tegrity compromises with small area overhead and little per-
formance degradation.

1 Introduction
Recent years have seen two trends driving reliability and

security to become critical concerns for embedded proces-
sors. As technological trends continue to lead towards
smaller and faster transistors with lower threshold voltages
and tighter noise margins, the probability of transient faults,
also known as soft errors, has increased dramatically [16].
As opposed to the permanent physical damages to proces-
sors (hard faults), the intermittent transient faults are caused
by external events which only change stored values or sig-
nal transfers, and thus compromise program code integrity.
The other trend in embedded systems has been the drastic
increase of embedded software contents and the pervasive-
ness of networked connections. The vulnerability of sys-
tems to software attacks has thus been increased. Security
has emerged as a new system design goal in addition to the
traditional design constraints of performance and power con-
sumption [12]. Typical security attacks include buffer over-
flow, fault injections, and data and software integrity attacks.
In this paper, we focus on detection of program code com-
promises, no matter whether they are caused by soft errors or
security attacks. At the instruction level, any code alteration
is manifested as bit flip.

Recent decades have also seen the emerging of
application-specific instruction-set processors (ASIPs) as an
important design choice for embedded systems. ASIPs allow
designers to customize the instruction set architecture (ISA)

∗Acknowledgments: This work was supported by an NSF
grant CCF-0541142.

for a specific application domain. They combine the flexi-
bility of software with the energy-efficiency and high perfor-
mance of dedicated hardware extensions [7]. Since ASIPs
allow both the ISA and underlying microarchitecture to be
tuned for specific applications, they provide a good plat-
form for integrating code integrity monitoring mechanisms
into the design process. In this work, we propose a microar-
chitectural support for program code integrity monitoring in
ASIPs.

1.1 Paper Overview and Contributions
We will address the problem of program code integrity

monitoring by ensuring that run-time program execution
does not deviate from the expected behavior. A monitor
should capture properties of the permissible behavior and
compare it with the dynamic execution. When a mismatch is
detected, the monitor throws an exception to trigger appro-
priate remedy mechanisms. We design a dedicated hardware
architecture for this purpose.

Even though there are other hardware-assisted architec-
tural mechanisms for security supports [6], their separate
hardware modules are not directly coupled with micropro-
cessors. In addition, they usually require compiler supports
and result in considerable performance and hardware over-
heads [15]. In our design, both the ISA and underlying mi-
croarchitecture are customized for specific applications, and
the microoperations1 for monitoring can be incorporated in
the design methodology as a design step by redefining the
ISA. Since microoperations are at a lower level than machine
instructions, the augmented microarchitecture is transparent
to upper software layers, thus no compiler support is needed
for the custom microarchitecture. The hardware monitor
is seamlessly integrated with the microprocessor pipeline
architecture. Hence both performance and area overheads
would be small.

The remainder of the paper is organized as follows. We
first give a survey of the relevant past work in Section 2.
Section 3 explains the rationale behind the proposed tech-
niques. Section 4 presents details of the monitoring architec-
ture. Section 5 describes a systematic ASIP methodology to
design the monitoring embedded ISA and microarchitecture
for any given application. Section 6 presents experimental
results and Section 7 draws conclusions.

2 Related Work
Monitoring code integrity helps computer systems defend

against malicious attacks and recover from soft errors. There
has been a lot of previous work on these two problems. How-
ever, most work targets individual problem only.

To prevent security attacks that execute malicious code,
checkpoints can be placed at one or multiple layers in a sys-
tem. However, if checking is done too early, attacks taking
place after it will not be detected. For example, the OS may

1Microoperations are elementary operations performed on data stored in
datapath registers.

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



check the integrity and authenticity of a program before load-
ing it into memory. The code, however, can be modified in
memory by attackers after the checkpoint.

Several hardware approaches have been proposed to pro-
tect the code when it is stored in memory. XOM encrypts
code and allows the instructions only to be executed but not
otherwise modified [8]. AEGIS encrypts both code and data
stored in off-chip memory and uses hash functions to check
the integrity of code and data in cache [18]. Both XOM and
AEGIS focus on the memory system and assume the pro-
cessor itself is secure. The instructions, however, may be
changed when being transferred into the processor or when
stored in the instruction window. In addition, encryption and
decryption of instructions at run-time require very sophis-
ticated cryptographic engines and often degrade the system
performance. Zhang et al. proposed a separate secure co-
processor for monitoring critical kernel data structures [20].
The secure co-processor, however, is too expensive to be
used in low-end computing devices.

Typical approaches to counter soft errors rely on redun-
dant resources. An operation is performed in several identi-
cal circuits simultaneously or in one circuit at different times.
Any discrepancies among the results indicate soft errors. For
example, TRUSS have two identical processors [17] and the
states of the two processors are compared periodically. The
Boeing 777 aircraft has three processors and data buses [19].
Redundancy of hardware is normally expensive, especially
for embedded system design where both the size and cost
are critical. SWIFT addresses the problem with software ap-
proaches [13]. An operation is performed twice with two
copies of code on different registers with identical values.
This method cannot detect multiple-bit faults and assumes
that a processor has sufficient resources (registers and func-
tional units) to execute redundant codes without significant
performance degradation.

Recently, Arora et al. proposed a run-time monitoring
mechanism implemented with hardware [6]. In addition
to the integrity of instruction streams, they monitor inter-
procedural and intra-procedural control flow as well. Their
monitor is separated from the pipeline, introducing long la-
tencies, and thus has a large performance overhead. Our
monitor is integrated into pipeline stages seamlessly, and the
monitoring operations are hidden by critical paths of the pro-
cessor pipeline. Therefore our method does not slow down
the processor’s cycle time.

Ragel et al. proposed IMPRES to monitor processor re-
liability and security, in which a special register stores the
expected checksum of a basic block and the value is com-
pared with the checksum generated at run-time [10]. Their
method relies on embedding extra instructions in the appli-
cation code to set checksums in the special register and thus
requires re-compilation and binary instrumentation which re-
sult in significant code size increase and performance degra-
dation. Our work is much more light-weighted and has a
substantial advantage over Ragel’s. It requires a minimum
support from the OS, and legacy code can run without modi-
fications or recompilations.

3 Design Rationale
Since hash values are a good indicator of program behav-

iors, we monitor program code integrity by comparing two
hash values of the instruction streams. One hash value is gen-
erated before the program starts and can be considered as the
expected behavior of the program. The other hash is gener-
ated by the processor at run-time after instructions have been
fetched into processor. Although the design idea is drawn
from standard code integrity monitoring approaches, many
issues remain to be investigated to make code checking ef-
ficient and effective. Next we discuss several salient design
issues.

3.1 Granularity Level of Code Monitoring
An appropriate granularity level to characterize the pro-

gram’s properties will affect the design complexity and ef-
fectiveness greatly. There are several considerations as listed
below in deciding the number of hash values we need to com-
pute and the range of instructions each hash value monitors.

1 The expected hash should be computed statically before
the execution and will match the dynamic hash if the
program is not compromised.

2 A behavior violation can be detected promptly. Ide-
ally, the compromised code should be stopped before
any damages are inflicted.

3 The hardware and performance overhead involved in
run-time checking should be reasonable.

Considering the above requirements, we select to mon-
itor the program code at the basic block level. It is easy
to detect the range of basic blocks with hardware. The dy-
namic hash value of execution can be computed at run-time
and compared with the statically computed expected hash.
Any changes to the code will be detected at the end of basic
blocks, most of which have less than 100 instructions.

3.2 Location of Code Monitoring
Another issues is where the code monitoring mechanism

is located. We would like to place it in late stages, e.g., as
close to the decode stage as possible, to capture more poten-
tial code changes. For example, if instructions are checked in
the instruction cache, those code alterations that occur when
being transferred over the bus will not be caught. We decide
to incorporate the monitoring mechanism into pipelines and
perform the checking in the instruction fetch (IF) and decode
(ID) stages. Any alterations made before instructions are
fetched into processor pipeline will be detected. Although
code changes may take place after the ID stage as well, in
this paper we focus on capturing the changes before instruc-
tions enter the pipeline.

3.3 Managing Hash Values
In order to compute and compare hash values, the mi-

croarchitecture needs to be enhanced. An internal hash ta-
ble (IHT) (or one or more special registers) is added to store
expected hash values. At run-time, the enhanced hardware
detects the beginning of a basic block and starts computing
its hash value as instructions are being fetched. When pro-
gram execution proceeds to the end of the basic block, the
IHT is searched. If a hash table entry for the basic block is
found and the dynamic hash matches the expected one, it is
a hash hit and the basic block is intact. If the basic block is
found in the hash table but the dynamic hash does not match
the expected one (defined as hash mismatch), or the basic
block is not found in the hash table at all (defined as hash
miss), an exception is raised with different signals indicating
the cause. The OS will take over the control and decide how
to respond.

The expected hash values can be loaded into the IHT by
applications, as seen in [10], or the OS. If applications load
the hash table, compilers need to insert at proper locations
of programs the instructions that load expected hash values.
The hash table load instructions will increase code size dra-
matically, and this method also increases complexity of the
compiler [10].

Alternatively, the IHT can be managed by the OS. The
compiler still generates the expected hashes for each block.
However, in this method, all the hash values are simply at-
tached to the application code and data and will be loaded
into a section of memory managed by the OS when the ap-
plication starts. The hash values can even be computed after
binary code is generated, e.g., by a special program or the OS



application loader. At the end of a basic block execution, an
exception caused by a hash mismatch will signal the OS to
terminate the application. On an exception caused by a hash
miss, the full hash table (FHT) in memory will be searched
instead, and some entries in the IHT will be replaced. If the
basic block is not in the FHT either, or dynamic hash is dif-
ferent from the expected hash value, the OS will terminate
the program. Note that the search of the FHT can be done
either by hardware or by software, in a similar manner as a
cache miss handler.

The OS managed scheme has several advantages over the
application managed one. It does not increase the complexity
of compilers very much, and does not change the code size
at all. In the OS managed scheme, the load of expected hash
values is determined by dynamic execution paths, which are
not available at compile-time. Thus the OS managed scheme
may achieve a better performance than the application man-
aged scheme.

No matter how expected hash values are computed and
loaded, the underlying microarchitecture for run-time moni-
toring is similar. The enhanced hardware computes the dy-
namic hash, compares it with entries in the IHT, and raises
exceptions on a hash miss or mismatch. In this paper, we will
focus on microarchitecture modifications for monitoring and
assume an OS is in place to handle monitoring exceptions.

The IHT acts like a cache of expected hashes stored in a
FHT, which is analogous to memory. Thus many techniques
for improving cache performance can be adopted here. The
IHT has a limited size and may not hold all the expected
hashes for a program. A suitable table entry replacement
mechanism should be invoked when the table is full. In our
OS managed approach, specific hardwares are designed to
implement the replacement policy and select appropriate en-
tries to overwrite when the IHT is full.

3.4 Error Model
The errors that the monitor can detect are determined by

the hash algorithms. Some sophisticated cryptographic hash
functions, such as MD5, SHA-1 [14], etc., can detect many
types of instruction changes as they produce large size hash
values and the probability of two instruction streams having
an identical hash is extremely small. However, cryptographic
hash functions are computationally intensive and induce long
latencies. Even with dedicated high-performance hardware,
it is difficult to make them keep up with the speed of pro-
cessor pipelines. We start with a widely adopted assumption
of simple faults: considering only a single bit flip in a basic
block of program code. We employ a simple checksum func-
tion, XOR, in our experiments. The detailed fault analysis
will be presented in Section 6.

4 Microoperation-based Monitoring Archi-
tecture

This section describes how to incorporate the code in-
tegrity monitoring mechanism into the processor pipeline.
We first introduce microoperations. We then provide an
overview of the proposed architectural support for run-time
program code integrity monitoring, and describe in detail the
microoperation-based implementation.

4.1 Microoperation
Microoperations are primitive processor operations which

are performed on data stored in datapath registers. They
are at a more fundamental level than processor instruc-
tions [11]. Figure 1 shows the sequence of microoperations
which needs to be executed in the IF stage in a PISA pro-
cessor pipeline [4]. Here CPC denotes the program counter
register. The current PC value is read from CPC and used
to fetch an instruction from the instruction cache (IMAU).

The fetched instruction is then stored into a specific register
IReg for later use. In the end, the CPC is incremented for
the next instruction fetch.

current pc = CPC.read();
instr = IMAU.read(current pc);
null = IReg.write(instr);
null = CPC.inc();

Figure 1. Microoperations for the IF stage

4.2 Overview of the Monitoring Architecture
The microarchitecture enhancement for program code in-

tegrity checking can be specified by microoperations and is
embedded into the pipeline stages. Since it is working at a
level below the instructions, the monitoring mechanism can
not be bypassed by software or compromised by malicious
users, thus providing an effective detection measure.

Figure 2 depicts the conceptual block diagram of the pro-
posed monitoring architecture. The original processor data-
path is represented by a typical in-order five-stage pipeline.
The pipeline stages interact with the instruction cache, data
cache, and control logic. For the purpose of code moni-
toring, the processor datapath is extended with a Code In-
tegrity Checker (CIC), where an internal hash table (IHTbb)
is set up to capture properties of the expected program be-
havior (EPB), a hash functional unit (HASHFU ) to com-
pute the properties of the program in execution, and a com-
parator (COMP ) to detect deviation of program execution
from the permissible behavior at run-time. Exception signals
will be asserted when a hash miss or a mismatch is found.
The control logic will notify the OS to respond with actions.
Since the components in the CIC are distributed into different
pipeline stages, they do not affect the number of execution
cycles for any program running on the processor.

WRMEMEXIDIF WRMEMEXIDIF Processor
control

Instr.
Cache

HashAddendAddst HashAddendAddst

Processor Datapath

Instruction (IR)
Current 

Address (PC)

Exception

HASHFU

COMP

Code Integrity Checker

IHTbb

Figure 2. Block diagram of the proposed mon-
itoring architecture

We have chosen to monitor the program behavior at the
basic block level. Flow control instructions, such as branch
and jump, indicate the end of a basic block, and the next
instruction to be executed is the beginning of another basic
block. In the internal hash table IHTbb, each entry is a tu-
ple associated with a basic block, (Addst, Addend, Hash),
where Addst is the starting address of the basic block,
Addend the ending address, and Hash the expected hash of
instructions in the basic block, which is a good indicator of
EPB. During program execution, the HASHFU computes
the hash value of the instructions within a basic block until
a flow control instruction is encountered. In our approach,
both the hash table look-up and entry replacement are dy-
namically performed during execution.



4.3 Microoperation-based Basic-block Level In-
tegrity Checking

Since the CIC is incorporated in the processor pipeline,
the related microoperations are distributed into different
stages. We next discuss monitoring microoperations in in-
struction fetch and decode stages.

4.3.1 Microoperation Extensions in the IF Stage for All
Instructions

Figure 1 presents a sequence of original microoperations in
the IF stage for all instructions. For monitoring, the stage will
be augmented with dynamic hash computation and storage.
A register (STA) is added in the microarchitecture to store
the starting address of the basic block currently in execution
and a register (RHASH) to store the computed hash value.
Figure 3 (a) illustrates the flow of operations added in the IF
stage. First, the register STA is checked, and a value of zero
indicates that it is at the beginning of a new basic block and
the current PC value needs to be loaded into STA. After an
instruction (instr) is fetched from the instruction cache, it is
fed into HASHFU , together with the old hash value from
RHASH , to compute the accumulated hash value for the ba-
sic block. The updated hash is then stored back to RHASH .
Figure 3 (b) shows the augmented microoperations in the
IF stage. The lines in italics are the extra microoperations
embedded for code monitoring. The microoperation “null
= [start==0]STA.write(current pc)” is a conditional opera-
tion: only when the condition in the bracket is asserted the
operation of writing current pc into STA is performed.

read STA

compare 
start=0?

load 
STA <= CPC

read RHASH

compute 
HASHFU (ohash, instr)

Write RHASH <= nhash

start

yes
no

ohash

nhash

current_pc = CPC.read(); 
instr = IMAU.read(current_pc); 
null = IReg.write(instr);
null = CPC.inc();
start = STA.read();
null =[start==0]STA.write(current_pc);
ohashv = RHASH.read();
nhashv = HASHFU.ope(ohashv, instr);
null = RHASH.write(nhashv)

(a)

(b)

read STA

compare 
start=0?

load 
STA <= CPC

read RHASH

compute 
HASHFU (ohash, instr)

Write RHASH <= nhash

start

yes
no

ohash

nhash

current_pc = CPC.read(); 
instr = IMAU.read(current_pc); 
null = IReg.write(instr);
null = CPC.inc();
start = STA.read();
null =[start==0]STA.write(current_pc);
ohashv = RHASH.read();
nhashv = HASHFU.ope(ohashv, instr);
null = RHASH.write(nhashv)

(a)

(b)

Figure 3. Flow diagram of augmented micro-
operations in the IF stage

Note that even though the IF stage for all instructions is
extended with extra microoperations, they are simple and
should not incur much latency. Normally the critical path
of a processor datapath is not in the IF stage, so that we an-
ticipate the augmentation in the IF does not affect program
performance greatly.

4.3.2 Microoperation Extensions in the ID Stage for
Branch/Jump Instructions

When a program execution encounters a flow control instruc-
tion, such as branch or jump, it reaches the end of the basic
block that is being executed. At this point, the IHT is looked
up for the basic block. Figure 4 shows the augmented micro-
operations in the ID stage for an “JR” instruction. Since the
detection of the end of a basic block is in the ID stage of a
control flow instruction (e.g., JR), it is one cycle later than
when the computation of hash needs to be reset for a new ba-
sic block (i.e., in IF stage). When a JR instruction is in the ID

stage, current PC (CPC) refers to the address of next instruc-
tion following the JR instruction. Hence we need to obtain
the JR instruction address from another register PPC (previ-
ous program counter). In our implementation, the range of a
basic block is indicated by addresses stored in register STA
and PPC. Computed hash value for the basic block is in the
RHASH register. A tuple < start, end, hashv > is then
used as the key to look up the table IHTbb. If it is a hash
hit, i.e., there is an entry with < Addst, Addend, Hash >
equals to < start, end, hashv >, the processor continues
as usual and the monitor prepares to check next basic block
by resetting STA and RHASH . If it is a hash miss (i.e.,
found = 0), an exception is raised to invoke the OS to
search the FHT in memory. If it is a mismatch, i.e., an entry
is found with the same address range but different hash value,
another exception is raised to stop the program execution.

start = STA.read();
end = PPC.read();
hashv = RHASH.read();
<found,match> = IHTbb.lookup(<start,end,hashv>);
exception0 = [found==0] ‘1’;
exception1 = [found==1 & match==0] ‘1’;
null = STA.reset();
null = RHASH.reset();
target = GPR.read(rs);

null = CPC.write(target)

Figure 4. Augmented microoperations for the
ID stage
The table IHTbb can be implemented using a content-

addressable-memory (CAM), or multiple registers. We will
investigate how the performance and area are affected by the
table size in Section 6.

5 Design Methodology
Figure 5 presents the ASIP design flow to incorporate a

program code integrity checker. An automatic synthesis tool
- ASIP Meister [1] is used. The tool captures target proces-
sors’ specification using a GUI, “Architecture design entry
system,” and generates RTL processor descriptions for logic
synthesis. Selection of target instructions for a particular ap-
plication is beyond the scope of this paper [9]. After the
target ISA has been specified, corresponding resources (such
as general purpose register file, ALU, registers, etc.) are se-
lected from a resource library. Meanwhile, extra hardware
modules for monitoring (e.g., RHASH , HASHFU , etc.,
as described in Section 4) are selected as well. The monitor-
ing microoperations are then embedded into proper instruc-
tions, such as branch, jump, etc. Synthesizable VHDL code
for the custom ASIP are generated from the ASIP Meister
HDL generator. The associated retargetable software toolset
including a compiler, simulator, and assembler is also auto-
matically generated for the customized processor.

6 Experimental Results
In this section, we present experimental results on eval-

uating the system overheads of the program code integrity
checker and analyze the effectiveness of our approach in fault
detection.

6.1 Performance Impact of the Checker
Since the size of the hash table is limited, very often not

all the expected hashes of a program can fit in the IHT. We



Resource 
Library

Select
resource 

Specification 
of target 

instructions

Define
instruction

Specification 
of monitoring 

microoperations

Select 
monitoring 

modules

Embed
monitoring

microoperations

Synthesizable 
processor
(in HDL)

Compiler &
Simulator &
Assembler

Architecture design 
entry system (GUI) 

ASIP Meister generator

Resource 
Library

Select
resource 

Specification 
of target 

instructions

Define
instruction

Specification 
of monitoring 

microoperations

Select 
monitoring 

modules

Embed
monitoring

microoperations

Synthesizable 
processor
(in HDL)

Compiler &
Simulator &
Assembler

Architecture design 
entry system (GUI) 

ASIP Meister generator

Figure 5. Design methodology for self-
monitoring ASIPs

will have hash misses caused by capacity, which will incur
FHT search and cause performance overheads. We will look
into a suite of benchmark programs to see if a proper hash
table size can be identified for most programs.

The number of basic blocks varies for different programs.
For example, stringsearch has 25 basic blocks executed
while susan has 93 basic blocks. Thus, it is hard to find
a good IHT size for all applications. Another application-
specific factor, the execution pattern of basic blocks, will
also affect the performance greatly. If the execution of ba-
sic blocks in a program has very good temporal locality, i.e.,
an hash table entry referenced by a program at one point in
time will be referenced again sometime in the near future,
the hash misses rate would be low. However, the locality
characteristic of programs also varies a lot.

We assume that the OS handles monitoring exceptions
with a least-recently-used (LRU) replacement policy. On
each hash miss, the OS replaces half of the entries with hash
records from the FHT. Figure 6 lists the miss rate of nine
applications in MiBench [2] for different hash table sizes
(from 1 to 32 entries). For several applications, such as
dijkstra, patricia, blowfish, and bitcount, a
hash table of 8 entries can reduce the miss rate greatly. We
see a significant reduction for all the applications when the
entry size is 32, which, however, may result in considerable
area overhead. Overall, hash table miss rate highly depends
on the behavior of programs.

Since each hash miss will incur FHT searching and OS
managed table replacement, the number of execution cycles
will increase. We assume each OS exception handling takes
100 cycles. Table 1 gives the cycle number overhead for code
monitoring. Column 2 reports the total number of execution
cycles for the original baseline architecture, a single-issue 6-
stage PISA processor. Column 3 and 4 presents the number
for the enhanced architectures with a CIC of 8 entries and
16 entries, respectively. Column 5 and 6 are the cycle num-
ber overheads. The average clock cycle overhead over the
nine applications is 14.7% for 8 entries and 7.7% for 16 en-
tries. The stringsearch application has relatively higher
overheads due to its poor temporal locality of basic block ex-
ecution.
6.2 Area Overhead

With the customized processor containing monitoring
routines generated, we use ModelSim to simulate the VHDL

ba
si

cm
at

h

su
sa

n

di
jk

st
ra

pa
tr

ic
ia

bl
ow

fis
h

rij
nd

ae
l

sh
a

st
rin

gs
ea

rc
h

bi
tc

ou
nt

-10

0

10

20

30

40

50

60

70

80

90

100

110

H
as

h
 m

is
s 

ra
te

 (%
)

1 8
16 32

Figure 6. The IHT miss rate of different appli-
cations for different table size

Table 1. Cycle number overhead for program
code integrity checking

Benchmarks Clock cycle (106) Overhead (%)
No CIC CIC8 CIC16 CIC8 CIC16

basicmath 158 174.89 159.35 10.7 0.9
susan 25.58 25.63 25.58 0.2 0

dijkstra 54.79 57.6 54.81 5.1 0
patricia 133 146.64 138.81 10.2 4.4
blowfish 37.07 43.32 42.53 16.9 14.7
rijndael 37.6 45.4 37.6 20.7 0

sha 13.21 15.65 13.25 18.5 0.2
stringsearch 4.43 6.65 6.62 50.1 49.4

bitcount 43.62 43.62 43.62 0 0

code [3]. The functionality of applications is verified.
The custom processors were synthesized into technology-

mapped gate-level netlists using Synopsys Design Com-
piler [5] with TSMC’s 0.18µ CMOS standard cell library. We
have implemented both the baseline architecture and a num-
ber of enhanced processors consisting of the code integrity
checker. The comparison results are presented in Table 2.
Column 2 reports the minimum cycle time of the implemen-
tations, and column 3 the cycle time overhead compared with
the baseline architecture. Column 4 reports the cell area of
the implementations, and column 5 the area overheads. It
shows that our method involves some area overhead, which
is almost linearly dependent on the size of the table. The cy-
cle time of the processor is not changed at all, because nor-
mally the critical path of a single-issue pipeline processor is
in the execution stage and the extended microoperations are
added in the IF and ID stages.

6.3 Fault Analysis
Our method compares the dynamic hashes generated dur-

ing instruction execution with the expected hash values.
Thus, only the errors on the executed instructions/basic
blocks can be detected. Note that some errors can be de-
tected by baseline microarchitecture itself, including invalid
opcode, invalid opcode/operand combinations, etc.

The mechanism described in this paper intends to detect
any changes to instructions before they are fetched and stored
in instruction registers. However, some errors may not be de-



Table 2. Cycle time and area overheads for program code integrity checking
Designs Minimum Cycle time Cell area Area

period(ns) overhead (%) overhead (%)
Baseline 37.90 - 2136594 -

With a 1-entry table (register) 37.93 0.1 2193510 2.7
With an 8-entry table 37.82 -0.2 2489737 16.5
With a 16-entry table 38.10 0.5 2750976 28.8

tected as it is alway possible to find two instruction streams
that have an identical hash. For a cryptographic hash algo-
rithm like MD5 and SHA-1, the probability of an error not
being detected is extremely small, e.g., 2−80 for SHA-1. Al-
though we employed a simple XOR checksum algorithm, the
probability of errors not being detected is still small. As long
as the number of bits changed is odd, the XOR checksum can
always detect the error. Hardware implementation of other
more sophisticated cryptographic algorithms can be adopted
in our monitoring architecture. The effectiveness of the XOR
checksum may also be improved with a process-dependent
random value.

7 Conclusions
In this paper, we have presented a microarchitectural sup-

port for monitoring the integrity of program code running on
embedded processors. We choose the monitoring level of ba-
sic blocks and formulate a mechanism to check the instruc-
tion stream within each basic block at run-time. The moni-
tor is incorporated into the processor pipeline seamlessly by
augmenting the IF and ID stages of critical instructions with
microoperations. The area overhead is reasonable for an IHT
with 8 or 16 entries. The maximum frequency from synthesis
report does not change at all. The number of execution cy-
cles is slightly increased due to OS exception handling. Our
studies reveal that the proposed architecture is capable of de-
tecting a wide range of program code integrity compromises,
no matter they are caused by security attacks or transient soft
errors.

Future work will include refining the entry replacement
policy for the IHT to make the methodology more effective,
and experimenting with more secure yet efficient hash algo-
rithms. Meanwhile, it will also be interesting to design the
recovery mechanism either at the architectural or OS level.

8 Acknowledgments
The authors would like to thank Prof. Sri Parameswaran

and Roshan Ragel of the University of New South Wales,
Australia for their helpful discussions and suggestions on
ASIP Meister usage.

References

[1] ASIP Meister. [http://www.eda-meister.org/
asipmeister].

[2] MiBench. [http://www.eecs.umich.edu/mibench/].
[3] ModelSim Simulator. [http://www.model.com].
[4] SimpleScalar Portable Instruction Set Architecture (PISA).

[http://www.simplescalar.com/].
[5] Synopsys Design Compiler.

[http://www.synopsys.com].
[6] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Secure em-

bedded processing through hardware-assisted run-time mon-
itoring. In Proc. Design Automation & Test Europe Conf.,
pages 278–283, Mar. 2005.

[7] T. Glokler and H. Meyr. Design of energy-efficient
application-specific instruction set processors. Kluwer Aca-
demic Publishers, Norwell, MA, 2004.

[8] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. In Proc. Int. Conf. on
Architectural Support for Programming Languages & Oper-
ating Systems, pages 168–177, Nov. 2003.

[9] J. Peddersen, S. L. Shee, A. Janapsatya, and
S. Parameswaran. Rapid embedded hardware/software
system generation. In Int. Conf. on VLSI Design, Jan. 2005.

[10] R. Ragel and S. Parameswaran. IMPRES: Integrated moni-
toring for processor reliability and security. In Proc. Design
Automation Conf., July 2006.

[11] R. G. Ragel, S. Parameswaran, and S. M. Kia. Micro embed-
ded monitoring for security in application specific instruction-
set processors. In Int. Conf. Compilers, Architecture, & Syn-
thesis for Embedded Systems, pages 304–314, Sept. 2005.

[12] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Secu-
rity in embedded systems: Design challenges. ACM Trans. on
Embedded Computing Systems: Special Issue on Embedded
Systems and Security, 3(3):461–491, Aug. 2004.

[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August. SWIFT: Software implemented fault tolerance. In
Proc. Int. Symp. on Code Generation & Optimization, 2005.

[14] B. Schneier. Applied Cryptography: Protocols, Algorithms
and Source Code in C. John Wiley and Sons, 1996.

[15] Z. Shao, Q. Zhuge, Y. He, and E. H.-M. Sha. Defend-
ing embedded systems against buffer overflow via hard-
ware/software. In Proc. Annual Computer Security Applica-
tion Conf., pages 352–361, Dec. 2003.

[16] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effects of technology trends on the
soft error rate of combinational logic. In Proc. Int. Conf. De-
pendable Systems & Networks, pages 389–399, June 2002.

[17] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe,
and A. G. Nowatzyk. Fingerprinting: Bounding soft-error-
detection latency and bandwidth. IEEE Micro, 24(6):22–29,
Nov./Dec. 2004.

[18] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas. AEGIS: Architecture for tamper-evident and tamper-
resistant processing. In Proc. Int. Conf. on Supercomputing,
pages 160–171, June 2003.

[19] Y. Yeh. Design considerations in Boeing 777 fly-by-wire
computers. In Proc. IEEE Int. High-Assurance Systems En-
gineering Symposium, pages 64–72, Nov. 1998.

[20] X. Zhang, L. Doorn, T. Jaeger, R. Perez, , and R. Sailer. Se-
cure coprocessor-based intrusion detection. In Proc. ACM
SIGOPS European Wrkshp, Sept. 2002.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




